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Abstract
A crossover phenomenon of the longitudinal spin–spin correlation function
is investigated on the spin-1/2 XXZ chain in a magnetic field at finite
temperatures. A commensurate–incommensurate transition of the correlation
function in the asymptotic behaviour has been pointed out by Klümper et al
in the framework of the quantum transfer matrix method. We show the field
dependence and the anisotropy-constant dependence of the critical temperature
by the quantum transfer matrix method. Using a quantum Monte Carlo
method with the continuous time loop algorithm, we directly observe the
commensurate–incommensurate transition. Detailed quantum Monte Carlo
analyses for the longitudinal spin–spin correlation in both the high and low
temperature regions are presented. Especially in the low temperature region,
evaluating the precise distance dependence of the correlation function, we prove
that the incommensurate oscillation has detectable amplitude, which has not
been estimated before. We also estimate the phase factor of the incommensurate
oscillation, which accurately coincides with the one from the quantum transfer
matrix method.
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1. Introduction

The spin-1/2 XXZ model is one of the most fundamental solvable models describing low-
dimensional magnetism, and its physical properties have been studied most extensively
[1]. Among them, the evaluation of the correlation function is still a challenging problem.
Concerning finite temperature correlations for local operators, the asymptotic behaviour in the
vicinity of the critical point (temperature T = 0) is systematically determined by a conformal
mapping. For a finite magnetic field, the longitudinal spin–spin correlation exponentially
decays with an incommensurate oscillation characterized by the Fermi momentum 2kF < π .
Unfortunately, away from the critical point, the above field theoretical approach does not tell
the quantitative behaviour of the correlation functions. As an alternative approach, recently
the quantum transfer matrix (QTM) method utilizing a lattice path integral formulation has
been developed to study finite temperature correlation functions [2–7].

The Hamiltonian of the XXZ model with the nearest-neighbour interaction in a magnetic
field is given by

H = J

L∑

j=1

(
Sx

j Sx
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j S
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j+1 + �Sz
jS
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j+1
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where Sx
j , S

y

j and Sz
j are the spin-1/2 operators acting on the j th site. The periodic boundary

condition is adopted in this study. Recently, using the QTM method, Klümper et al studied
the asymptotic behaviour of the longitudinal spin–spin correlation function

Ck = 〈
Sz

jS
z
j+k

〉 − 〈
Sz

j

〉〈
Sz

j+k

〉
(2)

for wide ranges of temperature in the antiferromagnetic critical regime: J > 0 and 0 < � < 1
[5]. Here 〈· · ·〉 ≡ Tr(exp(−H/kBT ) · · ·) denotes the thermal expectation value and a unit
kB = 1 is adopted. In general, the asymptotic behaviour of the longitudinal spin–spin
correlation function has the form

Ck�1 ∼ 2A(T ) cos(2kF(T )k) e−k/ξ(T ). (3)

The temperature dependence of the correlation length ξ(T ) and the phase factor kF(T ) of
the correlation function (2) in the asymptotic region k � 1 can be calculated from the
ratio of the largest and next leading eigenvalues of the QTM. In the analysis they found the
following significant behaviour. At high temperatures, the correlation function simply changes
alternately because of the antiferromagnetic interaction. There, the second largest eigenvalue
is single and has a negative real value resulting in an exponentially decaying correlation with
an alternating oscillation. In this case Ck is given in the form

Ck�1 ∼ A(T ) cos(πk) e−k/ξ(T ) for T > Tc. (4)

That is, 2kF(T ) = π . Here A(T ) is the amplitude of the slowest relaxation and is related to
the matrix element of the QTM.

On the other hand, when the temperature decreases, a merging of the second and the third
largest eigenvalues occurs at a certain temperature Tc. Below Tc the two eigenvalues form a
complex conjugate pairs resulting in the incommensurate oscillation as expected in the low
temperature limit in the field theory. Here 2kF(T ) �= π .

This transition causes a non-analytic temperature dependence of the correlation length
ξ(T ) and the phase factor kF(T ). The temperature dependence of kF(T ) obtained by the QTM
method is plotted in figure 1. Here we consider the Hamiltonian (1) with the parametrization
J = 2/sin γ and � = cos γ as in [5]. We adopt γ = π/5 and h = 0.1 as a typical case. The
temperature dependence of ξ(T ) by the QTM method (open circles) is plotted in figure 2
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Figure 1. The temperature dependence of the phase factor ‘2kF’ of the correlation function (2)
for J = 2/sin(π/5), � = cos(π/5) and h = 0.1. The commensurate–incommensurate transition
occurs at T = Tc = 0.233.
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Figure 2. The temperature dependence of the correlation length ξ (multiplied by temperature T )
for J = 2/sin(π/5),� = cos(π/5) and h = 0.1. The correlation lengths obtained by the
QTM method are depicted by the open circles. The crossover temperature Tc is estimated to be
Tc = 0.233. The results from the QMC method are shown by the closed diamonds.

where the values obtained by the quantum Monte Carlo method (closed diamonds) are also
plotted (see the next section). The parameter dependence of the transition temperature is
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Figure 3. (a) The dependence of Tc on h for J = 2/sin(π/5) and � = cos(π/5). (b) The
dependence of Tc on � for J = 2/sin(π/5) and h = 0.1. The label n on the horizontal axis is
defined as � = cos(π/n).

an interesting problem. The field (h) dependence of Tc by the QTM method is shown in
figure 3(a) and the anisotropy-constant (�) dependence of Tc by the QTM method is also
shown in figure 3(b) where n is defined as � = cos(π/n). Here we find that the transition
temperature increases when the field (h) increases, while the transition temperature decreases
when the anisotropy constant (�) increases.

This transition indicates that a commensurate–incommensurate transition driven by
temperatures takes place in the XXZ model with an external field. Note that this crossover
phenomenon does not occur without magnetic fields, where the asymptotic form of the
correlation function always takes the form (4).

The QTM method clearly revealed that the commensurate–incommensurate transition
due to temperature occurs in the analysis of the correlation length and the phase factor. The
amplitude of the relevant behaviour is given by A(T ). However, it is difficult to estimate
this amplitude in the QTM method explicitly. It is interesting to study how this new type of
phenomenon in the quantum spin system appears in observations. If the amplitude A(T ) has
a very small value, we cannot observe the incommensurate oscillation practically. Indeed,
estimation of A(T ) has not been done yet.

To investigate whether the amplitude A(T ) is large enough to detect the incommensurate
oscillation is a very significant problem not only in the theoretical sense but also in the
experimental sense. Furthermore, it is interesting to figure out how we can observe the
oscillation decay in an explicit way.

In order to study this problem, we exploit the quantum Monte Carlo (QMC) method with
the continuous time loop algorithm [8–12] and directly evaluate the distance dependence of
the correlation function at both high and sufficiently low temperatures.

The loop algorithm, which is a kind of cluster algorithm, has the following advantages
over the conventional one based on local updates of spin configurations (referred to as the world
line algorithm [13]). First, serious long autocorrelation problems peculiar to the conventional
algorithm especially at low temperatures are overcome in the loop algorithm updating spin
configurations by changes of non-local ‘loop’. This method allows us to simulate the system
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in the very low temperature region efficiently. Second, we can avoid numerical errors involved
in the extrapolation of the Trotter limit, introducing the continuous time method [12] into the
loop algorithm. We can directly simulate the Trotter limit. Recently, these advantages of this
method have been shown in many contexts in spin systems [11].

This QMC method enables us to evaluate the correlation function at low temperatures,
and we obtain an explicit example of the commensurate–incommensurate transition of the
correlation function. We show that the incommensurate oscillation is detectable by estimating
the amplitude A(T ) explicitly which has not been estimated before. We also estimate the
phase factor kF(T ), which agrees with the estimation by the QTM method.

2. Monte Carlo simulation

In order to estimate the correlation length and the phase factor, we obtain the correlation
function Ck . Because of the finite value of h the magnetization m = 〈

Sz
j

〉
itself is not zero.

In order to avoid the finite-size effect and to separate the constant part
〈
Sz

j

〉〈
Sz

j+k

〉
from the

asymptotic form of
〈
Sz

jS
z
k

〉
precisely, we investigate in a long chain with as much precision as

possible.
We use a periodic chain with L = 180 sites for the high temperature region (T > Tc).

This chain length is sufficiently long compared with the correlation length (ξ < 6) evaluated
by the QTM method (T > Tc).

To obtain good statistics, we adopt the following procedure. We performed 100 000
Monte Carlo steps (MCS) to reach equilibrium. Here the MCS means the number of updates
of whole spins in the 2D configuration space (lattice space and imaginary time space). Then, we
performed 100 000 MCS for one sampling for the evaluation of Ck . We obtain the correlation
function Ck by averaging over ten independent samplings.

In general, the efficiency of the Monte Carlo method with the loop algorithm becomes
worse when the magnetic field becomes strong [14]. However, in the present case, the value
h/J � 0.0294 is very small and we do not suffer from this difficulty in practice. Indeed, we
checked convergence for the lowest temperature case by performing a long run with more than
1000 000 MCS.

We estimate the correlation length ξ in the following procedure. First, we plot
ln((−1)kCk) = ln |Ck| as a function of k. Then, we estimate the slope of ln |Ck| by
the least-squares fitting for the following two sets of sites: k = i, i + 2, i + 4, i + 6 and
k = i + 1, i + 3, i + 5, i + 7, where i is a certain site. Averaging the slopes in these two cases,
we obtain i-dependent ‘correlation length’ ξi . We take a saturated value of ξi for large i as the
correlation length ξ , although the correlation becomes small and the statistics of data becomes
worse when i increases. We show the i-dependence of ξiT at T = 0.44 in figure 4 as a typical
example. We take the average value of ξiT over six independent trials, where one trial means
an estimation of ξi for {Ck} obtained by averaging over ten independent samplings. Because
the procedure to obtain ξiT contains nonlinear operations, it is complicated to define the error
bar. Here, we simply define the error bar as the standard deviations of distribution of the data.
In this case, the saturated value is ξT = 1.50 which agrees well with the result from the QTM
method. The value is plotted in figure 2 by a closed diamond.

In figure 5, we plot ln |Ck| as a function of k. With the value of ξ obtained by the above
procedure, the data points are well superimposed for large k (>10). Similarly, the correlation
lengths ξ are estimated at T = 0.28, 0.30 and 0.58, and are depicted by closed diamonds in
figure 2. Here we have confirmed that our method works in practice to obtain the correlation
length in the temperature region T � 0.28.
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Figure 4. The i-dependence of the correlation length (multiplied by temperature T ) for the system
size L = 180 and T = 0.44. The saturated value is estimated to be ξT = 1.50.
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Figure 5. ln |Ck | as a function of k for the system L = 180 at T = 0.44.

However, we find that Ck does not show a simple exponential relaxation when the
temperature comes closer to the critical point. In figure 6, we depict a typical example at
T = 0.26. We have investigated the correlation function very carefully and confirmed that
the non-single exponential relaxation is not due to insufficient data sampling. At the critical
temperature, the second and third eigenvalues are degenerate. Thus, near the critical point,
there are two relaxation modes which have nearly the same correlation length. This fact may
cause the strange behaviour of Ck . At the present stage we do not manage to estimate ξ from
the data. We cannot obtain the critical behaviour of ξ , which is left for future study.

Next, we study the correlation function at low temperatures (T < Tc), where we expect
the incommensuration of the correlation function. Near the critical point, the period of the
oscillation is very long and the correlation length is relatively small in the analysis of the QTM
method. Thus, it is difficult to observe the change due to the phase factor, cos(2kF(T )k),
and determine ξ and kF by the QMC method. In order to find the incommensuration, we
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Figure 6. ln |Ck | as a function of k for the system L = 180 at T = 0.26. Two parallel linear lines
with the inclination −1/ξ evaluated by the QTM method are also shown.

-10

-8

-6

-4

-2

0 20 40 60 80 100 120 140 160

ln
| C

k|

k

Figure 7. ln |Ck | as a function of k for the system L = 504 at T = 0.046. The divergence is
observed around k = 65.

study the correlation function at a rather low temperature, although it takes longer CPU
time at lower temperatures. Concretely, we exploit T = 0.046. Here we adopt a periodic
chain with L = 504 sites, which is sufficiently long compared with the correlation length
ξ � 27.55 evaluated by the QTM method (see figure 2). We estimate the correlation function
Ck averaging over four independent samplings each of which consists of 100 000 MCS.

In figure 7 we plot ln |Ck|. We find that ln |Ck| diverges around the 65th site. From
equation (3), it is natural to consider that this divergence occurs at the position of the node of
cos(2kF(T )k). Therefore, this divergence of ln |Ck| indicates the incommensurate oscillation
of the correlation function. Using this position (65th site), we evaluate the phase factor 2kF as

2kF = π − π/(2 × 65) = 3.1174. (5)
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Figure 8. ln (|Ck/cos(2kFk)|) as a function of k for the system with L = 504 at T = 0.046. The
linear line with the inclination −1/ξ evaluated by the QTM method is also shown.

This value agrees well with the QTM result 2kF = 3.1167, from which the position of node
is evaluated to be around the 63rd site. Although the value of the correlation function is
rather small ∼e−10, this is the first explicit observation of the incommensutate behaviour of
the correlation function.

Next, we evaluate the correlation length ξ at this temperature. We plot ln (|Ck/cos(2kFk)|)
as a function of k in figure 8. The result shows that the correlation function decays in a single
exponential form for large distance, and its exponent agrees with the reciprocal correlation
length −1/ξ calculated by the QTM method which is shown by the linear line in figure 8.
Thus, we also confirmed the result of the QTM in the low temperature region.

3. Summary

The commensurate–incommensurate transition which was predicted by the QTM method has
been investigated. We have shown the field dependence and anisotropy-constant dependence
of the transition temperature in the QTM method: the transition temperature (Tc) increases
when the field (h) increases or the anisotropy constant (�) decreases.

Using the QMC method with the continuous time loop algorithm, we have studied the
longitudinal spin–spin correlation function of the XXZ model in an external field at finite
temperatures.

The correlation functions with commensurate and incommensurate oscillations have been
explicitly observed in the QMC method at high and low temperatures, respectively. Although
estimation of the absolute value of the correlation function (amplitude) is difficult in the
QTM method and has not been investigated before, the present finding proves that the
incommensurate oscillation is detectable in practical observation. We have also estimated
the correlation length and the phase factor of the correlation function, which agree with the



Quantum Monte Carlo study on commensurate–incommensurate transition 5303

results evaluated by the QTM method. Thus, we found the commensurate and incommensurate
regions at temperatures apart from the critical point. However, it was found very difficult to
determine ξT and kF in the vicinity of Tc, although we investigated the correlation function
carefully. There the correlation function shows non-single exponential relaxation. This feature
may be related to a critical property of the present transition, but it is left for a challenging
problem in the future.

Finally, let us remark that similar crossover phenomena due to the temperature and
the external field have also been found in the t–J chain [15] recently. More generally
commensurate–incommensurate transitions at finite temperatures have been reported in other
spin chains with competing interactions [16, 17]. It would be an interesting problem to find a
common feature among these transitions.

Acknowledgments

The present work was supported by grant-in-aid for scientific research and by a 21st century
COE Program at Tokyo Tech ‘Nanometer-Scale Quantum Physics’ from Ministry of Education,
Culture, Sports, Science and Technology of Japan. KS was also supported by the research
fellowships of the Japan Society for the Promotion of Science for Young Scientists. The
numerical calculation was done with support from the Supercomputer Center of the Institute
for Solid State Physics of the University of Tokyo, which is also deeply acknowledged.

References

[1] Takahashi M 1999 Thermodynamics of One-Dimensional Solvable Models (Cambridge: Cambridge University
Press)

[2] Inoue M and Suzuki M 1988 Prog. Theor. Phys. 79 64
[3] Takahashi M 1991 Phys. Rev. B 43 5788
[4] Mizuta H, Nagao T and Wadati M 1994 J. Phys. Soc. Japan 63 3951
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